数据可视化,我经常于用这些工具
发布时间:2021-06-04 13:00:31 所属栏目:大数据 来源:互联网
导读:01 Excel 网传数据分析师必备基础套餐是ESP,即Excel+SQL+Python,这种说法不见得完全正确,但也确有一定道理,其中Excel更是几乎每名数据分析师乃至每名职场人士必备的办公工具。 个人也习惯于应用Excel,更具体说主要是应用Excel的三类功能:图表制作、内
01 Excel
网传数据分析师必备基础套餐是ESP,即Excel+SQL+Python,这种说法不见得完全正确,但也确有一定道理,其中Excel更是几乎每名数据分析师乃至每名职场人士必备的办公工具。
个人也习惯于应用Excel,更具体说主要是应用Excel的三类功能:图表制作、内置函数以及数据透视表。一般而言,当数据量较小(100以内)时,个人非常倾向于用Excel完成图表插入,不仅简洁方便,而且内置的多种样式、丰富的设置选项以及所见即所得的制图体验,都无疑是小数据量作图的首选。
▲Excel内置了丰富的图表类型
Excel支持的图表类型也极为丰富,除了常规的条形图、折线图、饼图和散点图之外,像雷达图、旭日图、箱线图等视觉效果更好的图表也是支持的。同时更是支持了丰富的设置效果,而且都是极为简便易懂的,几乎不需要教程即可摸索掌握。
02 Python可视化库
作为一名数据分析师,Python几乎是必须掌握的;而在Python数据分析相关的众多第三方包中,可视化库又非常强大。在这其中,个人尤为常用的有5个相关库:
1. Matplotlib
该库与Numpy和pandas号称Python数分三剑客,也是当初配合Numpy和scipy替代Matlab的重要一环,几乎是Python数据分析过程中必须熟练掌握的绘图库。
不过需要承认的是,Matplotlib功能强大,但其实相对更加偏向底层,提供了大量的参数和接口来设置图表各种细节,对于初学者来说并不那么友好。但实话说,在彻底掌握其核心思想之后,其实还是比较符合正常思维的。
这里,附个人总结的Matplotlib完整入门教程:Matplotlib入门详细教程
2. seaborn
既然Matplotlib过于偏向底层,绘图也较为繁琐,那有没有简单易上手的绘图库呢?seaborn其实算得上一个,不过也并不算是Matplotlib的升级或替代品,而只能算是有力补充。
相较而言,seaborn基于Matplotlib,提供了更为丰富的样式,具有更加简洁的API接口,一两句代码就能完成非常强大的图表绘制。
附seaborn入门教程:Python数据科学系列:seaborn入门详细教程
![]() (编辑:钦州站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |